Staying Regular?
Alan Hajek

ALl G: So what is the chances that me will eventually die?
C. EVERETT KOOP: That you will die? — 100%. | can
guarantee that 100%: you will die.
ALI G: You is being a bit of a pessimist...
—Ali G, interviewing the
Surgeon General, C. Everett Koop




Autobiographical back story

 Over my philosophical career I've been interested in
various topics, but certain topics have especially
gripped me...



Introduction

e |'ll discuss the fluctuating fortunes of regularity:

If X is possible, then the probability of X is positive.
O X =2 P(X) > 0.



Introduction

I'll give many reasons to care about regularity.
So it’'s important to formulate it carefully.

I’ll look at various formulations of it for subjective
probability, some implausible, some more plausible.

I’ll offer what | take to be its most plausible version:
a constraint that bridges doxastic modality and
doxastic (subjective) probability.

But even that will fail.



Introduction

 There will be two different ways to violate regularity
— zero probabilities
— Nno probabilities at all (probability gaps).

e Both ways create trouble for pillars of Bayesian
orthodoxy:
- the ratio formula for conditional probability
— conditionalization, characterized with that formula
- the multiplication formula for independence
— expected utility theory



Introduction

* The failure of this seemingly innocuous constraint
has ramifications that strike at the heart of
probability theory and formal epistemology.



Regularity

If X is possible, then the probability of X is positive.

* We already had the probability axiom:
P(X) =0
 Now this constraint gets the tiniest strengthening if X
IS possible; the inequality becomes strict:
P(X) > 0O
if X is possible.



* Muddy Venn diagram: no bald spots.




Regularity

e An unmnemonic name, but a commonsensical idea.

* “If it can happen, then it has a chance of
happening’...



Advocates of regularity

* Regularity has been suggested or advocated by
Jeffreys, Jeffrey, Carnap, Shimony, Kemeny,
Edwards, Lindman, Savage, Stalnaker, Lewis,
Skyrms, Appiah, Jackson, Hofweber, ...



Ten reasons to care about regularity

 Regularity promises a bridge between modality and
probability—a bridge that illuminates both.



Ten reasons to care about regularity

* Regularity promises a bridge between probability
and truth:

If X has probability O, then X is impossible, hence
(actually) false.

If X has probability 1, then X is necessary,
hence (actually) true.
e (No assumption of Humean supervenience.)
 If regularity fails, even this is a bridge too far!



Ten reasons to care about regularity

* Regularity may provide a bridge between traditional
epistemology and Bayesian epistemology.



Ten reasons to care about regularity

* Regularity promises to illuminate rationality.

e |t would provide a much-needed additional
constraint on rational credence that goes beyond

coherence.



Ten reasons to care about regularity

e Various Bayesian convergence results require
regularity.



Ten reasons to care about regularity

e Regularity would allow us to simplify various

‘probability 1’ convergence theorems - for example,
the strong law of large numbers.

 The ‘probability 1’ qualification could be removed for

any regular probability function, as it would be
redundant.



Ten reasons to care about regularity

e Centrepieces of synchronic Bayesian epistemology
face problems when regularity fails.



Ten reasons to care about regularity

 The centrepiece of diachronic Bayesian
epistemology - conditionalisation - faces problems
without a version of regularity; yet it also conflicts
with regularity.



Ten reasons to care about regularity

e Bayesian decision theory faces problems if regularity
fails.

e So failures of regularity pose some of the most
Important problems for probability theory as a
representation of uncertainty.



Ten reasons to care about regularity

 These failures motivate other representations of
uncertainty — Popper functions, ranking functions,
NAP, comparative probabilities...



Formulating reqularity

If X is possible, then the probability of X is positive.

 This is just a schema.

 There are many senses of ‘possible’ in the
antecedent...

 There are also many senses of ‘probability’ in the
consequent...



Formulating reqularity

* Pairthem up, and we get many, many regularity
conditions.

e Some are interesting, and some are not; some are
plausible, and some are not.

 Focus on pairings that are definitely interesting, and
somewhat plausible, at least initially.



Formulating reqularity

* |n the consequent, let’s restrict our attention to
rational subjective probabilities.

e |f X is possible, C(X) > O.
 |In the antecedent? ...



Formulating reqularity

e Untenable:

Logical Regularity
If X is LOGICALLY possible, then C(X) > O.
(Shimony, Skyrms)




Formulating reqularity

 Problems: There are all sorts of propositions that are
logically possible, but that are a priori knowable to
be false, and may rationally be assigned credence O:
- ‘Obama is a 3-place relation’
- ‘Clinton is the number 17’



Formulating reqularity

* The probability axioms are not themselves logically
necessary, so logical regularity curiously would
require an agent to give positive credence to their
falsehood.



Formulating reqularity

* More plausible:
Metaphysical Regularity
If X is METAPHYSICALLY possible, then C(X) > O.




Formulating reqularity

* This brings us to Lewis’s (1980) formulation of
“regularity”: “C(X) is zero ... only if X is the empty
proposition, true at no worlds”. (According to Lewis,
X Is metaphysically possible iff it is true at some
world.)

e Lewis regards regularity in this sense as a constraint
on “initial” (prior) credence functions of agents as
they begin their Bayesian odysseys—Bayesian
Superbabies.



Formulating reqularity

A problem for metaphysical regularity as a constraint
on Superbabies: it is metaphysically possible for no
thinking thing to exist, so by regularity, one must
assign positive probability to this.

But far from being rationally required, this seems to
be irrational.

Dutch Book argument.

It's at least rationally permissible to assign
probability O to no thinking thing existing.



Formulating reqularity

* However, doxastic possibility seems to be a
promising candidate for pairing with subjective
probability.

e Doxastic regularity:

If X is doxastically possible then C(X ) > O.




Formulating reqularity

* We might think of a doxastic possibility for an agent
as.
- something that is compatible with what she believes,;
- or something that she is not certain is false;
— or perhaps some other understanding ...

— | will speak of a doxastically live possibility—for short, a live
possibility.



Formulating reqularity

e So from now on | will understand regularity as:
if X is a live possibility then C(X) > O
o All the better that this can be understood in multiple

ways. For | will argue that on any reasonable
undertanding of ‘live possibility’, it is false.



Formulating reqularity

 If doxastic regularity is violated, then offhand two
different attitudes are conflated...

 Not just at O, but throughout the entire [O, 1]
Interval.



Formulating reqularity

* Doxastic regularity avoids the problems with the
previous versions...



Formulating reqularity

* And yet doxastic regularity appears to be untenable.



Formulating reqularity

 If this version of regularity fails, then various other
interesting versions will fail too. E.g.:

e Epistemic regularity:
If X is epistemically possible, then C(X) > O.

e This is stronger than doxastic regularity; if it fails, so
does this.




Formulating reqularity

e Evidential regularity:
If X is not ruled out by one’s evidence, then C(X) > 0O




Two ways to be irregular

* There are two ways in which an agent’s probability
function could fail to be regular:

1) It assigns zero to some live possibility.
2) It fails to assign anything to a live possibility.



Two ways to be irregular

 Those who regard regularity as a norm of rationality

must insist that all instances of 1) and all instances of
2) are violations of rationality.

e | will argue that there are rational instances of both 1)
and 2).



Dart example

Throw a dart at random at the [0, 1] interval of the reals ...



Dart example




Dart example

« Various non-empty subsets get assigned probabillity O:
 All the singletons
* Indeed, all the finite subsets
* Indeed, all the countable subsets

e Even various uncountable subsets (e.g. Cantor’s ‘ternary set’)



Dart example

« Examples like this pose a threat to regularity as a
norm of rationality.

e Any landing point in [0, 1] is a live possibility for our
Ideal agent.



Arguments against regularity

In order for P to be regular, there has to be a certain
harmony between the cardinalities of P’'s sample
space and its range.

If the sample space Is too large relative to P,
regularity will be violated.



Arguments against regularity

Kolmogorov’s axiomatization requires P to be
real-valued. This means that any uncountable
probability space is automatically irregular.
(Hajek 2003).



Arguments against regularity

e Itis curious that this axiomatization Is restrictive
on the range of all probability functions: the real
numbers in [0,1], and not a richer set;

e yet itis almost completely permissive about their
domains: Q (the sample space) can be any set
you like, however large, and F (the set of subsets
that get assigned probabilities) can be any field on

Q, however large.



Arguments against regularity

We can apparently make the set of contents of an
agent’s thoughts as big as we like.

But we limit the attitudes that she can bear to
those contents—the attitudes can only achieve a
certain fineness of grain.

Put a rich set of contents together with a relatively

impoverished set of attitudes, and you violate
regularity.




Infinitesimals to the rescue?

The friend of reqgularity replies: if you're going to have a
rich domain of the probability function, you’d better have
a rich range.

Lewis:

“You may protest that there are too many alternative possible
worlds to permit regularity. But that is so only if we suppose, as |
do not, that the values of the function C are restricted to the
standard reals. Many propositions must have Infinitesimal
C-values ... (See Bernstein and Wattenberg (1969).)”



Infinitesimals to the rescue?
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Infinitesimals to the rescue?

e Bernstein and Wattenberg’s article does not
substantiate Lewis’ strong claim that there are too
many possible worlds to permit regularity only if C’s
values are restricted to the reals.

* Bernstein and Wattenberg show that using
Infinitesimals, one can give a regular probability
assignment to the landing points of our fair dart throw.



Infinitesimals to the rescue?

But that’s a very specific case, with a specific
cardinality!

Lewis himself thinks that the cardinality of the set
of possible worlds is greater than that (at least
beth-2).

We need a similar result that holds if the set of
possibilities has higher cardinality than that of the
real interval [O, 1].

Indeed, the set of doxastic possibilities may well be
a proper class! ...



Arguments against regularity,
even allowing infinitesimals

e | conjectured that a version of the cardinality
problem would always arise.

e Pruss proved it: if the cardinality of €2 is greater
than that of the range of P, then regularity fails.

* No symmetry assumption is needed - cardinalities
do all the work.



Arguments against regularity,
even allowing infinitesimals

e But if we add a symmetry assumption, we have
another, more intuitive argument.

 We can scotch regularity even for a hyperreal-valued
probability function by correspondingly enriching the
space of possibilities...

e The dartis thrown at the [O, 1] interval of the
hyperreals.



Arguments against regularity,
even allowing infinitesimals

T
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Not to scale!

X is strictly contained within nested intervals of width
g, for each infinitesimal €. The probability of each
interval is its width, €. (This assumption can be
somewhat weakened.)

So the point’s probability is bounded above by all

these €, and thus it must be smaller than all of them—
i.e. 0.



Arguments against regularity,
even allowing infinitesimals

| envisage a kind of arms race:

We scotched regularity for real-valued probability
functions with sufficiently large domains (uncountable).

The friends of regularity fought back, enriching their
ranges: making them hyperreal-valued.

The enemy of regularity counters by enriching the
domain.

And so It goes.

By Pruss’s result, the enemy can always win (for anything
that looks like Kolmogorov’s probability theory).



Arguments against regularity,
even allowing infinitesimals

Could we tailor the range of the probability function to
the domain, for each particular application? (Like the
general of a defense force ...)

The trouble is that in a Kolmogorov-style axiomatization
the commitment to the range of P comes first...

On the tailoring approach, a probability function is a
mapping from F to ...—well, to what?

What will the additivity axiom look like?

In any case, this ‘wait and see’ approach is quite a
departure from Kolmogorov.



Arguments against regularity,
even allowing infinitesimals

 On a Kolmogorov-style approach, there will always
be an €2 that will have non-empty subsets assighed
probability O.



Doxastically possible credence gaps

* | will argue that you can rationally have credence
gaps.



Examples of doxastically possible credence gaps

e Non-measurable sets



Dart example
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. Certain subsets of Q—so-called non-measurable
sets—get no probability assignments whatsoever.



Examples of doxastically possible credence gaps

 Chance gaps
* The Principal Principle says (roughly!!):

your credence in X, conditional on it having chance x,
should be x:

C(X | chance(X) = x) = x.



Examples of doxastically possible credence gaps

e A relative of the Principal Principle? Roughly:

your credence in X, conditional on it being a chance
gap, should be gappy:

C(X | chance(X) is undefined) is undefined.

e All | need is that rationality sometimes permits your
credence to be gappy for a hypothesized chance gap.



Examples of doxastically possible credence gaps

 There are arguably various examples of chance gaps:
- Chance statements themselves

- Cases of indeterminism without chances: Earman’s space
invaders, Norton’s dome (Eagle)



Examples of doxastically possible credence gaps

e One’s own free choices

o Kyburg, Gilboa, Spohn, Levi, Briggs, Liu and Price
contend that when | am making a choice, | must
regard it as free. In doing so, | cannot assign
probabilities to my acting in one way rather than
another (even though onlookers may be able to do
SO).

e “Deliberation crowds out prediction”—or better, it
crowds out probability.



Examples of doxastically possible credence gaps

* To be sure, these cases of probability gaps are
controversial.

 But these authors are committed to there being
credence gaps, and thus violations of regularity.

e All | need is that it is permissible for them to be
credence gaps.



Ramifications of irregularity for Bayesian
epistemology and decision theory

e | have argued for two kinds of counterexamples to
regularity: rational assignments of zero credences,
and rational credence gaps, for doxastic possibilities.

e | now want to explore some of the unwelcome
consequences these failures of regularity have for
traditional Bayesian epistemology and decision theory.



Problems for the
conditional probability ratio formula

 The ratio analysis of conditional probability:
P(AN B)
P(B)

P(A|B) =

... provided P(B) > O



Problems for the
conditional probability ratio formula

* What is the probability that the dart lands on %2,
given that it lands on 727?

e 1.

e But the ratio formula cannot deliver that result,
because P(dart lands on 72) = 0.



Problems for the
conditional probability ratio formula

Gaps create similar problems.
Take your favorite probability gap, G.
The probability of G, given G, is 1.

But the ratio formula cannot deliver that result,
because

P(G) is undefined.



Problems for the
conditional probability ratio formula

* We need a more sophisticated account of
conditional probability.

e | advocate taking conditional probability as primitive
(in the style of Popper and Rényi).



Problems for conditionalization

 The zero-probability problem for the conditional
probability formula quickly becomes a problem for
the updating rule of conditionalization, which is
defined in terms of it.

e Suppose the agent learns evidence E.

Prew(X) = PoolX | E) (provided Py (E) > O)



Problems for conditionalization

e Suppose you learn that the dart lands on ¥2. What

should be your new probability that the dart lands on
157

e 1.
* But
P, 4(dart lands on %2 | dart lands on %2)

iIs undefined, so conditionalization (so defined) cannot
give you this advice.



Problems for conditionalization

Gaps create similar problems.

Suppose you learn that G. What should be your new
probability for G?

1.
But
P,4(G| G)

is undefined, so conditionalization cannot give you
this advice.



Problems for conditionalization

* We need a more sophisticated account of
conditionalization.

* Primitive conditional probabilities to the rescue!



Problems for independence

 We want to capture the idea of A being
probabilistically uninformative about B.

e Aand B are said to be independent just in case
P(A N B) = P(A) P(B).



Problems for independence

e According to this account of probabilistic
independence, anything with probability O is
independent of itself:

If P(X) = 0, then P(X n X) = 0 = P(X)P(X).

e But identity is the ultimate case of (probabilistic)
dependence.



Problems for independence

e Suppose you are wondering whether the dart
landed on %2. Nothing could be more informative
than your learning: the dart landed on Y-.

e But according to this account of independence, the
dart landing on %2 is independent of the dart
landing on Y2!



Problems for independence

e Gaps create similar problems.

e Suppose you are wondering whether G. Nothing
could be more informative than your learning: G.

e But there is no verdict from this account of
iIndependence.



Problems for independence

* We need a more sophisticated account of

iIndependence - e.g. using primitive conditional
probabilities.

 Branden Fitelson and | have been working on this!



Problems for expected utility theory

e Arguably the two most important foundations of
decision theory are the notion of expected utility,
and dominance reasoning.



Problems for expected utility theory

 And yet probability O propositions apparently show
that expected utility theory and dominance
reasoning can give conflicting verdicts.



Problems for expected utility theory

e Suppose that two options yield the same utility
except on a proposition of probability O; but if that
proposition is true, option 1 is far superior to option
2.



Problems for expected utility theory

* You can choose between these two options:

— Option 1: If the dart lands on 1/2, you get a million
dollars; otherwise you get nothing.

— Option 2: You get nothing.



Problems for expected utility theory

Expected utility theory apparently says that these
options are equally good: they both have an
expected utility of O.

But dominance reasoning says that option 1 is
strictly better than option 2. Which is it to be?

| say that option 1 is better.

| think that this is a counterexample to expected
utility theory as it is usually interpreted.

Both evidential and causal.
(To be sure, there are replies ...)



Problems for expected utility theory

e Gaps create similar problems.

* You can choose between these two options:

— Option 1: If G, you get a million dollars; otherwise you get
nothing.

— Option 2: You get nothing.



Problems for expected utility theory

e Expected utility theory goes silent.
e | say that option 1 is better.
* We need a more sophisticated decision theory.



Conclusion

Irregularity makes things go bad for the orthodox
Bayesian; that is a reason to insist on regularity.

The trouble is that regularity appears to be untenable.

| focused on doxastic regularity, but other interesting
regularities will meet similar downfalls.

| think, then, that irregularity is a reason for the
orthodox Bayesian to become unorthodox.



Conclusion

* | have advocated replacing the orthodox theory of
conditional probability, conditionalization, and
iIndependence with alternatives based on
Popper/Rényi functions. Expected utility theory
appears to be similarly in need of revision.



Conclusion

* And then there are some possibilities that really
should be assigned zero probability ...
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Berkeley, Miami, the Lofotens Epistemology conference; to Carl Brusse and Elle Benjamin for

help with the slides; and to Tilly.




Ten reasons to care about regularity

* Regularity may provide a bridge between logic and
probability.

e Failure of regularity is a thorn in the side of
probabilistic semantics for logic. Probabilistic
notions of entailment, incompatibility are poor
surrogates for their logical counterparts.
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